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ABSTRACT

Straightforward least squares fitting of I-V curves leads
to non optimal fits: residuals around and above the open-
circuit voltage dominate the fit, leading to a bad fit at the
maximum power point and lower voltage values. To deal
with this problem authors have resorted to using weighting
functions or to minimizing the area between data and fit
instead of the least squares procedure. Both approaches
lack a sound statistical basis.

Voltage noise has a big influence on fitting due to the
steep slope of an |-V curve for higher voltage values. For
this reason we have used Orthogonal Distance Regression
(ODR), which is a mathematical method for fitting measure-
ments with errors in both voltage- and current measure-
ments. It allows for computing both the I-V curve parame-
ters and their uncertainties.

INTRODUCTION

Measurement of the I-V curve of solar cells is one of
the primary means of obtaining information about a solar
cell. Useful parameters like the open circuit voltage Voc,
the short circuit current Isc and the maximum power point
voltage Vmpp and current Impp are easily obtained. When a
good model for the |-V curve is available, more information
can be extracted. I-V curves have been fitted in this work
using the standard one- and two-diode models (1) and (2)
respectively:

*

(V) = Rv_h + 1oz [e(%) — 1] + I (1)
s

*
Rsh

Here lp; and Iy are the diode dark saturation currents,
n; the ideality factor, I;; the light generated current, V, the
thermal voltage and Rgp, the shunt resistance. We will also
use the shunt conductivity Ggy, = 1/Rg. The effect of series
resistance is included:
V* =V —Rgel (V) (3)
Model parameters are determined in roughly two ways
which will be dealt with in the following two subsections.

(V) = ~— + 1o [e(%) - 1] + 1o [e%) - 1] e )

Curve characteristics

Easily determinable curve shape characteristics are de-
termined by polynomial fits to small portions of the I-V curve.
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These curve shape characteristics are typically the short cir-
cuit currentlsc, the open circuit voltage Vo, the curve slopes
at the open circuit- and short circuit points, and the current
Impp @and voltage Vmpp at the maximum power point. A sys-
tem of non-linear equations for the diode curve parameters
parameters is set up which must be solved by numerical
zero finding. Examples can be found in [1]- [3].

A disadvantage of this kind of methods is that not all
measured points are used. It is also difficult to obtain error
bounds on the parameters found. An advantage of these
methods is the speed. As computers become faster, the
aspect of speed becomes ever less important.

Fitting techniques

The second approach is to use fitting techniques. Let
(li, Vi) be the measured current voltage values and p the
vector of parameters to be determined. In case of the I-V
curve models (1) and (2), p consists of Ggp, Rse, Iit, lop and
Ny or lgpz. The optimum set of parameters p, is determined
by minimizing the following sum:

R m
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n is the number of data points measured. The w; are
a set of weights. m determines the norm used for fitting.
For m = 2 we obtain standard least squares fitting. In least
squares fitting the underlying assumption is that the current
measurements are samples from a normal distribution with
standard deviation o (l;). The w; should then be taken as
1/0(l;). In the case w; = 1 the fit is unweighted and we
implicitly assume all the current measurements are from
the same distribution.

Straightforward unweighted least squares fitting of |-V
data leads to non optimal fit parameters: residuals from the
open-circuit onwards dominate the fit, leading to too large
residuals near the maximum power point. A typical result is
shown in Fig. 1.

To deal with this problem several authors have resorted
to two basically different methods.

Usage of weights

In fitting dark current measurements it is common prac-
tice to use as weights the reciprocals of the measured dark
current [4]- [6]. For illuminated I-V curves this choice of
weights can not be used since the weights become too
large near Voc (Martinez [7]). Zdanowicz[8] proposes sev-
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Fig. 1. Unweighted least squares fit to an I-V curve. The
data points have been calculated with lg; = 1. x 107%A,
log = 2. x 10°5A, Ggn = .1S, Rge = TMQ, Iy = —3A. A
voltage noise of 1ImV and a current noise of 3mA was added.

eral weighting functions which give different fits. No clear
arguments are presented however to chose between the
different weight functions.

Usage of special norms

The higher the value of m is, the more sensitive the norm
is to outliers. In the extreme case of m — oo, the m-norm
corresponds to the maximum norm. In general the least
squares or 2-norm is used because it can be motivated with
statistical arguments if the errors in the measurements are
assumed to be normal deviates.

Chan [9] introduced minimizing the surface area be-
tween data and fit which essentially is a fit in the 1-norm,
with as weights the distances between the consecutive volt-
age values.

Cabestany [5] used besides the standard least squares
fit the maximum norm m — oco.

Datta [10] used a mixed method for a single diode model.
Voc and Isc are assumed to be known. This allows Iy and Ig;
to be eliminated. The remaining parameters are determined
by least squares.

Our work

Despite the large volume of literature on |-V curve fitting,
we think an important aspect has been overlooked, being
the influence of voltage noise as illustrated in Fig. 2.

The appreciable size of this effect is best illustrated with
a numerical example based upon a 10x10cm? crystalline
silicon solar cell under 1-sun illumination. We experience
noise levels of around 3mA and 1mV in current and voltage
respectively. The slope of the curve at Vo typically is 20m<2,
so that the 1mV voltage noise causes a current noise level
of 50mA, which is much larger than the 3mA error in the
current measurement.

For this reason we have used Orthogonal Distance Re-
gression (ODR). This is a mathematical method for fitting
measurements with errors in both voltage- and current mea-
surements. Both the choice of weights and the choice of
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Fig. 2: A small voltage noise manifests itself as a large
current noise due the steep slope of the I-V curve

other norms lack a sound statistical basis. ODR puts the
fitted parameters on a sound statistical basis. We will de-
scribe this method and show results of the fits obtained.

ORTHOGONAL DISTANCE REGRESSION

There is a special method to find a fit in the case that
there is both noise in current and voltage measurements.
This method is known as Orthogonal Distance Regression
(ODR) (see Boggs [11]) and can be used for instance for
fitting a circle to a set of data points in a plane, indicating its
ability to deal with strongly varying slopes.

We will designate noise levels in current and voltage
with o (V) and o (1) respectively. With V; and [; we denote
the fitted values.

The weighted ODR method finds a fit to the data by
minimizing the following sum:
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under the n constraints that each pair (V;, [;) has to be
related by one of the diode-curve models from equations
(1) and (2) in combination with (3). Note that for absence of
voltage noise (V; = V;), the ODR criterion (5) is equivalent
to the standard least squares minimization. ODR assumes
that noise in current- and voltage measurements are statis-
tically mutually independent.

The name of the method originates from the fact that
when voltage and current values are scaled with o (V) and
o (l) respectively, the sum minimized by ODR consists of
the sum of squares of the distances from the measured
points to the noise scaled fitted I-V curve. The underlying
completely statistical motivation of this method provides us
with a simple criterion for the quality of the fit and allows
for computing not only the diode curve parameters but also
their uncertainties.

Charles[2] compared various methods of obtaining curve
parameters through zero-finding on curve characteristics by
looking at the sum of squares of distances from data points




Fig. 3: An approximate value for the distance of a measured
point (O) to the fitted noise scaled I-V curve (solid line) can
be obtained from the current residual A1’ at that point and
the slope « of the curve

to fit. Both the short circuit current and the open circuit volt-
age were scaled to one. The ODR criterion was used in his
work to compare fits obtained otherwise, not to fit with.

AN ODR BASED WEIGHTING SCHEME

In this section we will cast the ODR minimization proce-
dure into a weighted least squares formulation. We observe
that the total noise in a current observation consists from a
part o (1) due to uncertainty in measuring the current and

from a part ma(V) due to voltage uncertainty. We can

compute a total noise level o¢(1 (V)) in the current measure-
ment by adding the variances due to both noise sources:

dl 2
o(1(V)?=o(1)*+ (W“(V)) (6)

The idea is that instead of a full ODR method we use
a standard non-linear least squares routine to fit | as a
function of V with 1/0¢(1 (V)) as weights. In the following
we show that the weighting scheme (6) can also be derived
from ODR. The procedure is illustrated in Fig. 3.
We first transform current and voltage values as follows:
| \%
'Vy=|(—, —— 7
"= (55700 U
Let «(V’) be the slope of the curve at voltage V'. « (V')
can be related to the derivative of the | (V) curve.

dl’ _a(V) dl
dv'  o(l) dV
Let Al’ be a residual in the transformed current. Be-

cause of the transformation we have Al = o(1)Al’. We
have for the distance d to the I’ — V’ curve:

d ~ cos(a)Al’
The approximation is exact in case of a linear model.
Using the trigonometrical identity cos?(x) = 1/(1 + tan(x))
we obtain for the squared distance d?:

tan(a (V") =
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Fig. 4. Weighted least squares fit to the same data as in
Fig. 1. The curve marked "Noise” refers to the total noise
level from equation (6)
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Comparing with equation (6) we see that when the slope
of the curve does not change to much, least squares fitting
of | as a function of V with 1/0¢ (I (V)) as a weight function
is a good approximation to ODR. Also note that in practical
solar cells, the slope of the curve is limited by series resis-
tance, allowing this approach to be used. This approach
can not be used in the same way to fit V versus |, because
the shunt resistance can be large rendering the I-V curve
flat for low voltage values.

The main advantage of the standard least squares for-
mulation is that specialized Fortran routines (See Gay [12])
can be used which exploit the presence of linear parame-
ters in the diode curve model, leading to faster and more
reliable convergence. Initial estimates are needed only for
the non-linear parameters. An initial estimate for the series
resistance is easily obtained from the steepest slope that
occurs, a good initial estimate for the ideality factor is 1.

Our computer code employs an iterative scheme such
that the fitted current and not the measured current is used
to calculate the effect of series resistance through equation

@3).

RESULTS

Fig. 4 shows our ODR based fit to the same data as in
Fig 1. Indeed the ODR fit follows the measurements more
closely around the maximum power- and the short circuit
point. Despite the large residuals for voltage above Vqc, the
fit is still close to the data points owing to the steep slope of
the curve. Fig. 4 also shows the total noise level o (1 (V))
computed with formula (6). Up to around the maximum
power point at 475mV, our weighting scheme is the same
as uniform weighting, since the curve is flat and errors in



Name Uniform

1it(A) —3.0007 (14+0.2%)
lo1(A) 0.12587 x 1078 | (14 3.7%)
lo2(A) 0.10572 x 10* | (14 18.7%)
Rse(€2) | 0.77580 x 1072 | (14 1.5%)
Gsh(S) | 0.14337 (1+16.7%)

ODR

1i:(A) —3.0001 (1+0.0%)
lo1(A) 0.10410 x 108 | (14 2.4%)
lo2(A) 0.18997 x 10~* | (14 3.5%)
Rse(2) | 0.71995 x 1072 | (14 2.0%)
Ggsn(S) | 0.10354 (14 2.8%)

Table 1: Fitted curve parameters from Figs. 1 and 4 with
their uncertainties

the voltage contribute little to errors in the current. From
the maximum power point onwards, the influence of voltage
noise increases sharply. This is explained by the fact that
for higher voltages the total noise according to (6) can be
approximated with:

dl
ar(1 (V) = WU(V) ©)

Table 1 compares the results from both fits. The re-
sults can be compared with the known parameters of the
I-V curve from Fig. 1. The ODR fit returns much better es-
timates of the I-V curve parameters and gives smaller and
more accurate uncertainty levels. In the unweighted fit Ggp,
and lp, are most off.

A further conclusion, which is supported by calculations
not shown here is that the fit is less sensitive to the range
of voltage values used.

CONCLUSIONS

The strongly varying slope makes it difficult to fit solar
cell I-V curves with standard least squares techniques. Or-
thogonal Distance Regression (ODR) is well suited to this
fitting problem and puts the fitting procedure on a sound
statistical basis. In a controlled way ODR allows residuals
to be larger for voltage values above V¢, thus obtaining a
better fit for lower voltage values, while still maintaining a
close fit above Vqc.

The uncertainties obtained in the parameters are more
realistic. The x? of the fit can be used to judge whether the
one- or two-diode models are suitable. We have shown how
ODR can be cast in the form of a weighted least squares
formulation. The numerical procedure is fast and reliable
enough to be used on-line.
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